Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany

II. Stable isotope natural abundance of N₂O

JENS TILSNER 1,2 , NICOLE WRAGE 1,3 , JUTTA LAUF 1,4 and GERHARD GEBAUER 1,*

¹Universität Bayreuth, Lehrstuhl für Pflanzenökologie, 95440 Bayreuth, Germany; ²Current address: Albrecht-von-Haller–Institut für Pflanzenwissenschaften, Abteilung Biochemie der Pflanze, 37073 Göttingen, Germany; ³Department of Environmental Sciences, Wageningen University and Research Center, 6700 EC Wageningen, The Netherlands; ⁴Agrolab, 85416 Langenbach, Germany; *Author for correspondence (e-mail: gerhard.gebauer@uni-bayreuth.de; phone: ++49–921-552060; fax: ++49–921-552564)

Received 15 March 2001; accepted in revised form 24 March 2002

Key words: δ^{15} N, δ^{18} O, Denitrification, Grassland, Nitrification, Nitrous oxide, Stable isotopes

Abstract. We analysed the stable isotope composition of emitted N₂O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N₂O was analysed every 2-4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N₂O (0.024 μ mol g_{dw}^{-1}) and still produced N_2O from denitrification. Under denitrifying incubation conditions, much more N_2O was formed (0.91 μ mol g_{dw}^{-1} after 48 h). The isotope ratios of N_2O emitted from denitrification stabilized at $\delta^{15}N = -40.8 \pm 5.7\%e$ and $\delta^{18}O = 2.7 \pm 6.3\%e$. In the field experiment, the N₂O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were $\delta^{15}N = -8.6\%$ and $\delta^{18}O = 34.7\%$ after slurry application, $\delta^{15}N = -4.6\%$ and $\delta^{18}O$ = 24.0% after mineral fertilizer application and $\delta^{15}N = -6.4\%$ and $\delta^{18}O = 35.6\%$ in the control plots, respectively. So, in all treatments the emitted N_2O was ^{15}N -depleted compared to ambient air N_2O ($\delta^{15}N$ = 11.4 \pm 11.6%, δ^{18} O = 36.9 \pm 10.7%). Isotope analyses of the emitted N₂O under field conditions *per* se allowed no unequivocal identification of the main N_2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N₂O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N_2O to N_2 and (2) that N_2O emission rates had to exceed 3.4 μ mol N₂O m⁻² h⁻¹ to obtain reliable N₂O isotope data.

Introduction

Nitrous oxide (N₂O) is an atmospheric trace gas that at present originates predominantly from microbial transformation of anthropogenic nitrogen (N) inputs into soils (IPCC 1995, 1996; Mosier et al. 1998). Due to its effects on the radiation balance

(Houghton et al. 1995) and on stratospheric ozone (Crutzen 1981), there is considerable interest to reduce N_2O emissions. To enable the evaluation of land use practices with respect to their potential effects on N_2O emissions, N_2O emissions from the two most important N_2O forming soil processes, nitrification and denitrification (Davidson 1991) need to be distinguished.

During nitrification, N_2O can be formed by spontaneous disintegration of nitrogen hydroxide (NOH), an unstable, enzyme-bound intermediate during the oxidation of ammonium (NH₄⁺) to nitrite (NO₂⁻) (Hynes and Knowles 1984; Schmidt and Voerkelius 1989). It can also be produced by nitrifier denitrification, the reduction of NO_2^- by nitrifying bacteria, probably under low-oxygen conditions (Ritchie and Nicholas 1972; Poth and Focht 1985; Voerkelius 1990; Wrage et al. 2001). During denitrification, N_2O is an obligatory intermediate of the complete NO_3^- reduction to N_2 (Payne 1981; Zumft and Kroneck 1990). Not all denitrifying microorganisms, however, carry out all reduction steps. Complete anaerobiosis favours N_2 formation. N_2O can become the main reaction product under low O_2 pressure (Knowles 1982). Generally, intermediate O_2 concentrations at the interface between anoxic and oxic soil favour formation of N_2O by both, nitrification and denitrification (Goreau et al. 1980; Khdyer and Cho 1983; Parkin and Tiedje 1984).

Attributing emitted N₂O to particular source processes is difficult, because different processes can occur simultaneously in close proximity (Robertson and Tiedje 1987; Davidson 1992). The inhibition of nitrification in the presence of 10 Pa acetylene (C₂H₂) or both, nitrification and N₂O reduction in denitrification at 10 kPa C₂H₂ (Klemedtsson et al. 1990; Knowles 1990) (acetylene inhibition method, AIM), disturbs the soil system and can lead to an underestimation of denitrification by blocking the supply of NO₃. Results based on the AIM are also uncertain when diffusion into the soil is hindered, e.g. under wet conditions (Arah et al. 1993; Malone et al. 1997). There is currently no inhibition method to study N₂O emission from nitrification by selectively inhibiting denitrification. E.g. adding O₂ suppresses denitrification (Knowles 1982), however, also affects N2O production from nitrification. ¹⁵N tracer techniques are potentially useful to distinguish between nitrification and denitrification, but may have undesired fertilization effects and uncertainties about its homogenous distribution in the soil (Granli and Bøckman (1994) and references therein). Moreover, when adding ¹⁵NO₃ tracer, N₂O may result from nitrification or from denitrification of newly formed (unlabelled) NO₃. Thus, denitrification may be underestimated. If ¹⁵NH₄ is used, any labelled N₂O derived from denitrification of ¹⁵NO₃ formed in nitrification would cause an overestimation of N₂O production from nitrification.

A non-invasive alternative is the measurement of $^{15}\text{N}/^{14}\text{N}$ and $^{18}\text{O}/^{16}\text{O}$ isotope ratios of the emitted $N_2\text{O}$ at natural abundance level (Shearer and Kohl 1993). Due to different substrates of $N_2\text{O}$ formation and different isotope discrimination processes during key reaction steps, $N_2\text{O}$ derived from nitrification and from denitrification may differ isotopically (Wahlen and Yoshinari 1985; Kim and Craig 1990). Sources of N in $N_2\text{O}$ from nitrification are NH_4^+ from mineralized soil organic matter, from mineral or organic fertilizer, or from atmospheric deposition. O sources are soil water ($\delta^{18}\text{O} \approx -10\%$ in the area of this investigation) and soil air ($\delta^{18}\text{O}$

= 23.5%₀) (Schmidt and Voerkelius 1989). NH₄ from organic manure or soil organic matter in agricultural soils is usually enriched in 15N (see Tilsner et al. (2002)). NH₄ from mineral fertilizers has a $\delta^{15}N$ close to zero (see Tilsner et al. (2002)), while NH₄ from atmospheric deposition is depleted in ¹⁵N (see Bauer et al. (2000)). In N₂O from denitrification, δ^{15} N and δ^{18} O depend on the origin of the nitrate. NO₃ from soil or organic fertilizer nitrification is depleted in ¹⁵N when compared to its NH₄ precursor (see Tilsner et al. (2002)) and has a δ^{18} O between 0.8 and 5.8% (Durka et al. 1994). In NO₃ from mineral fertilizers δ^{15} N is close to 0% and δ^{18} O is close to 23.5% (Tilsner et al. 2002). Nitrate from atmospheric deposition is characterized by its high enrichment in ^{18}O ($\delta^{18}O \approx 60\%$; see Durka et al. (1994)). Due to the complex stable isotope composition of its sources and the complex reaction mechanisms, the interpretation of the stable isotope composition of N₂O with regard to its possible sources is more difficult than for other nitrogen compounds (Högberg 1997). The N and O atoms in N₂O not only derive from different sources, but also depend on isotope effects during transformation processes. For example, in denitrification N₂O is not the only possible end product and its isotope composition is affected by the rate of N₂O reduction to N₂. Also, depending on the turnover rate, different intermediates of denitrification may accumulate so that the isotope fractionation effects of normally not rate-limiting reaction steps imprint themselves on the N₂O produced.

Our aim was to determine the source of N_2O emitted over a one-year period from an extensively managed grassland treated with two types of N fertilizer application and an unfertilized control (Tilsner et al. 2002) by analysing the relative N and O isotope abundances of N_2O . N_2O isotope data from the field study were compared to those obtained from soil incubation experiments under controlled laboratory conditions.

Materials and methods

Laboratory experiments

We determined the isotope signature of N_2O emitted from the field soil under conditions favouring either denitrification or nitrification (Table 1). 100 g_{fw} (fw: fresh weight) of homogenized moist soil without stones and roots, corresponding to approximately 70 g_{dw} (dw: dry weight), were incubated for 48 hours in closed 1 l glass vessels. To establish conditions favouring denitrification, the soil samples were incubated in He atmosphere and the water content was adjusted to 80% w/w of soil dw. The N_2O accumulation was measured at 1, 6, 12, 24, 30, 34 and 48 hours after N application by connecting the headspace to a photoacoustic trace gas analyzer (TGA) (Multigas Monitor 1302, Bruel & Kjaer, Ballerup, Denmark) via a closed circular tube system. Simultaneously, gas samples were taken from the headspace to determine the $\delta^{15}N$ and $\delta^{18}O$ values of the accumulated N_2O . Due to the highly pressure sensitive measurement chamber of the TGA, the circular tube sys-

Table 1. Experimental conditions as used for laboratory incubations of soil samples from the extensively managed grassland site in NE Bavaria, Germany. $100~g_{\rm fw}$ of soil were incubated in 1 l glas vessels for 48 h in both experiments. N was added as KNO $_3$ in experiment 1 and as NH $_4$ Cl in experiment 2. Each treatment is based on three replicates. Incubation was carried out at 22 °C in the dark.

Treatment	N addition	incubation atmosphere				
Experiment 1: soil conditions favouring denitrification (80% (w/w) water content)						
1. control	_	Не				
2. favoured denitrification	100 mg NO ₃ -N	Не				
3. favoured denitrification and	100 mg NO ₃ -N	He + 0.01% (v/v) C_2H_2				
inhibition of nitrification						
4. favoured denitrification and	100 mg NO ₃ -N	He + 10% (v/v) C_2H_2				
inhibition of N2O reduction						
Experiment 2: soil conditions favouring nitrification (60% (w/w) water content)						
1. control	_	ambient air				
2. favoured nitrification	100 mg NH ₄ +N	ambient air				
3. favoured nitrification and test	100 mg NH ₄ +N	ambient air				
for denitrification (15N labelled						
NO ₃ pool)						
4. favoured nitrification and sup-	100 mg NH ₄ +N	O_2				
pression of denitrification						

tem was not flushed with He before sampling. Thus, ambient air was introduced into the glass vessels during each TGA measurement, resulting in an increase of the O_2 concentration up to $\sim 1.6\%$ v/v in the headspace. This is still sufficiently anaerobic to effectively favour denitrification (Parkin and Tiedje 1984; Arah et al. 1991). Both, N_2O concentration and isotope ratios, were corrected mathematically for N_2O introduced into the headspace with ambient air by taking into account the volume of the TGA tube system and the concentration and δ values of N_2O in ambient air. Four different treatments with conditions favouring denitrification were applied with three replicates each: (1) unfertilized control; (2) fertilization with 100 mg N as KNO $_3$ ($\delta^{15}N = -3.3 \pm 1.1\%$, $\delta^{18}O = 20.1\%$; see Table 2); (3) fertilization with 100 mg N as KNO $_3$ and inhibition of nitrification by addition of 0.01% (v/v) C_2H_2 ; (4) fertilization with 100 mg N as KNO $_3$ and inhibition of N $_2O$ reduction by addition of 10% (v/v) C_2H_2 ; (Table 2). Acetylene was flushed through demineralized water before use to exclude the possibility of a fertilizing effect of acetone traces (Gross and Bremner 1992)

To favour nitrification, 100 $g_{\rm fw}$ (corresponding to $\sim 70~g_{\rm dw}$) soil was incubated at a water content of 60% w/w of soil dw, with treatments (1) control: unfertilized, incubated with ambient air; (2) nitrification: fertilized with 100 mg N as NH₄Cl (δ^{15} N = $-0.3 \pm 0.2\%$, Table 2) and incubated in ambient air; (3) nitrification and test for denitrification: fertilized with 100 mg N as NH₄Cl and incubated in ambient air. Additionally, the soil nitrate pool (15 μ mol in 100 $g_{\rm fw}$ of soil) was ¹⁵N-

Table 2. $\delta^{15}\text{N-N}_{total}$ of slurry and calcium ammonium nitrate and $\delta^{15}\text{N-NH}_4^+$, $\delta^{15}\text{N-NO}_3^-$ and $\delta^{18}\text{O-NO}_3^-$ values of calcium ammonium nitrate as used as fertilizers for the field experiment and $\delta^{15}\text{N-NH}_4^+$, $\delta^{15}\text{N-NO}_3^-$ and $\delta^{18}\text{O-NO}_3^-$ values of the KNO $_3$ or NH $_4$ Cl as used in the laboratory incubations (n = 3 for $\delta^{15}\text{N}$ and n = 1 for $\delta^{18}\text{O}$ measurements). Annual means were calculated as averages of the three fertilizations weighted by the respective amounts of applied N.

experiment	fertilizer	$\delta^{15}N$ [‰]	δ^{18} O [‰]
fertilization on 6 June 1998	slurry N _{total}	8.6	
(day 0)	mineral fertilizer N _{total}	-0.7	
	mineral fertilizer NH ₄ ⁺	-2.6	
	mineral fertilizer NO ₃	1.8	no data
fertilization on 19 Sept. 1998	slurry N _{total}	7.1	
(day 84)	mineral fertilizer N _{total}	-0.7	
	mineral fertilizer NH ₄ ⁺	-2.6	
	mineral fertilizer NO ₃	1.8	no data
fertilization on 15 March 1999	slurry N _{total}	8.6	
(day 262)	mineral fertilizer N _{total}	-0.7	
	mineral fertilizer NH ₄ ⁺	0.7	
	mineral fertilizer NO ₃	0.5	21.3
annual means	slurry N _{total}	8.3	
	mineral fertilizer N _{total}	-0.7	
	mineral fertilizer NH ₄ ⁺	-1.5	
	mineral fertilizer NO ₃	1.4	
incubation experiments	KNO_3	-3.3 ± 1.1	20.1
	NH ₄ Cl	-0.3 ± 0.2	

enriched to a $\delta^{15} N$ of $\sim 2760\%$ by adding 0.16 μ mol K $^{15} NO_3$ tracer (99% $^{15} N$ enriched). (4) nitrification and suppression of denitrification: fertilization with 100 mg N as NH₄Cl, incubation in 100% O_2 atmosphere (Table 1). The four treatments were run in three replicates, each.

Soil NO₃ and NH₄⁺ concentrations and the corresponding δ^{15} N values were determined for one sample of homogenized and untreated soil before the start of each experiment and for each incubated soil sample after each experiment, as described by Tilsner et al. (2002).

Design of the field experiment and gas sampling

The site of the field experiment is a meadow which is mown 2–3 times per year for silage and hay production and receives three slurry applications of $10-15~{\rm m}^3~{\rm ha}^{-1}$ annually. The soil of this grassland is a clay loam with a pH_{KCl} of 5.7 ± 0.2 and a pH_{H2O} of 6.3 ± 0.1 in the topmost $10~{\rm cm}~4 \times 4~{\rm m}$ plots were fertilized with either slurry (75 kg N ha⁻¹), mineral fertilizer (calcium ammonium nitrate, 74 kg N ha⁻¹), or left unfertilized as control, with 4 replicates per treatment. The fertilizers were applied in three doses between June 1998 and March 1999, in parallel with the slurry applications by the farmer. Details about the field site and the experiment are

in Tilsner et al. (2002). The relative N and O isotope abundances of the applied fertilizers are shown in Table 2.

Gas samples for N_2O isotope analysis were taken from June 1998 to April 1999 in combination with N_2O emission measurements (Tilsner et al. 2002). Each fertilizer application was followed by daily sampling for 10 days with at least one sample per plot and per day. Otherwise, gas samples were taken approximately once every two to four weeks except for 12 weeks between September and December 1998, when the meadow was completely flooded due to heavy rainfall.

Gas samples for isotope analyses were collected by including glas vessels (volume of 100-120 ml) in a closed circular tube system used for N_2O emission measurements (Tilsner et al. 2002). Every 10 minutes, the air in this closed system was circulated between a closed chamber in which the N_2O emitted from the soil was accumulating for 40 min, and a TGA. Thus, the vessels were flushed with sample air from the measurement chamber five times before being closed and taken to the laboratory for further analysis.

Measurement of N_2O isotope ratios

N and O isotope ratios were determined directly from N₂O gas at m/z 44, 45 and 46 by use of a gas chromatograph-isotope ratio mass spectrometer coupling (GC-IRMS) (Hewlett-Packard GC 5890 series II, Wilmington, USA; Combustion Interface II and gas-IRMS delta S, both Finnigan MAT, Bremen, Germany). CO₂ and H₂O were removed in a NaOH trap (Carbon Dioxide Absorbent, Lüdi AG, Flawil, Switzerland) and N₂O was purified and pre-concentrated from 100 to 120 ml air samples by cryo-focussation in a liquid N₂ trap for 8 min (PreCon, Finnigan MAT), as described by Brand (1995). As a laboratory standard, N₂O gas (99.9990%, Linde, Munich, Germany) from a lecture bottle was used. For N isotope ratio calibration purposes this N₂O standard gas was reduced to N₂ on a Ni (99,98%) surface at 1150 °C in the Combustion Interface II and measured against an N₂ laboratory standard gas, which had previously been calibrated against the reference substances N1 and N2 provided by the IAEA (Vienna, Austria). For ¹⁸O, the laboratory N₂O standard gas was calibrated against a CO₂ reference gas (Voerkelius 1990) previously calibrated against the reference substances NBS 16 to 18 provided by the IAEA. The internal reproducibility of the measurement system is typically $\pm 0.15\%$ for N and \pm 0.30% for O. Isotope ratios are presented as δ values, which are defined as:

$$\delta x = \left(\frac{R_{sample}}{R_{standard}} - 1\right) \times 1000 \quad [\% o] \tag{1}$$

where δx is the δ value of the heavy isotope x and R is the ratio of heavy isotope (at%, atom percent) to light isotope (at%). The international standards are N_2 in ambient air for $\delta^{15}N$ (Mariotti 1983) and standard mean ocean water (Vienna-SMOW) for $\delta^{18}O$, respectively.

The δ values measured in sample air have to be corrected for N₂O in the ambient air already present in the measurement chamber when it is closed (Gebauer et al., in preparation):

$$\delta x_{emitted} = \frac{\delta x_{measured} \times c(N_2O)_{measured} - \delta x_{ambient\ air} \times c(N_2O)_{ambient\ air}}{c(N_2O)_{measured} - c(N_2O)_{ambient\ air}} \quad [\%o] (2)$$

where δx is the δ value of the heavy isotope x (‰), c is the N_2O concentration (ppm) and the indices "emitted", "measured" and "ambient air" indicate newly emitted N_2O , total N_2O in the chamber and N_2O in ambient air, respectively.

Statistical methods

To calculate mean δ values weighted by both, emission rate and time, the time between subsequent samplings (Δt_i) was used as the time-weighting factor:

$$\Delta t_i = 0.5 \quad (t_{i+1} - t_{i-1}) \tag{3}$$

where t_i is the time (days since the first fertilizer application in June 1998) of the ith sampling. Differences between experimental treatments were compared by one-way ANOVA. When effects were significant at the 0.05 level, multiple comparisons of means by the LSD test were executed. In the laboratory experiments, N_2O concentration changes with time were analyzed by linear regression when no obvious increase was visible.

Results

Laboratory experiments

Under conditions favouring denitrification, the field soil produced significant amounts of N_2O (0.91 μ mol g_{dw}^{-1} after 48 h of incubation) in all treatments (Figure 1) except for the control (0.20 μ mol g_{dw}^{-1} after 48 h of incubation), which differed significantly from all other treatments. Treatments that received NO_3^- additions showed a linear increase in N_2O concentration. After 48 h, the amount of applied NO_3^- in these three treatments was reduced by about 15% (data not shown). In the control treatment, the N_2O concentration in the headspace increased during the first 24 h of the incubation (linear regression: positive slope with $r^2 = 0.97$ for sample 1 and $r^2 = 0.99$ for samples 2 and 3). During the remaining 24 h of the incubation, the N_2O concentration in the headspace decreased or remained constant (linear regression: slope negative with $r^2 = 0.95$ for samples 2 and 3 or close to zero with $r^2 = 0.84$ for sample 1). Here, almost all the NO_3^- present in the soil at the start of the incubation was gone at the end of the incubation (data not shown). This indicates substrate limitation and subsequent consumption of previously

formed N_2O for the control. In the other, not substrate-limited treatments, isotope ratios of N_2O quickly stabilized at constant values of $\delta^{15}N = -40.8 \pm 5.7\%$ and $\delta^{18}O = 2.7 \pm 6.3\%$ (Figure 1). Neither 0.01% nor 10% C_2H_2 treatments changed the N_2O formation rate or the isotopic composition in the denitrification experiment (LSD tests, p = 0.05).

 N_2O production was much lower under conditions favouring nitrification in all treatments (Figure 1). The treatments with NH $_4^+$ addition produced 0.024 $\mu mol~N_2O~g_{dw}^{-1}$ after 48 h of incubation, which equals less than 3% of the N_2O production in the denitrification experiment. The N_2O concentration in the headspace increased for 24 h and then stagnated. However, no more than 5–7% (350–470 μmol) of the applied NH $_4^+$ was used after 48 h (data not shown). The nitrate content of the soil increased only slightly from 15 μmol (start of the incubation) to 38 \pm 3 μmol per vessel (after 48 h) in all treatments (data not shown).

Incubation under O_2 atmosphere further reduced N_2O production (significantly different from other treatments with NH_4^+ addition, but not from controls) (Figure 1). For this treatment, $\delta^{18}O-N_2O$ was not measured, because of the high O_2 content of the headspace gas mixture. Labelling of the inherent nitrate pool of the soil with trace amounts (1% of pool size) of $^{15}NO_3^-$ resulted in considerably $^{15}N-$ enriched N_2O ($\delta^{15}N\approx 900\%$).

Field experiment

 δ values of N₂O in ambient air varied between δ^{15} N = -1.6 ± 12.0% and δ^{18} O = $39.1 \pm 8.2\%$ in the summer (June – August 1998) and $\delta^{15}N = 15.8 \pm 2.6\%$ and $\delta^{18}O = 33.3 \pm 2.8\%$ in the spring (March – April 1999), with annual means of δ^{15} N = 11.4 ± 11.6% and δ^{18} O = 36.9 ± 10.7% (Table 3). δ values of N₂O emitted from the soil scattered in a range of several thousand \(\int_{\infty} \) in both, positive and negative directions after correction for ambient air contamination (Equation 2). This scattering is unrealistic, because δ values of natural substances are known to usually vary within narrow ranges of about 20 to -20% for δ^{15} N and about 30 to -30%for δ^{18} O (see Ehleringer and Rundel (1988)). There are only very few reports for δ values of natural compounds that exceed these narrow ranges, e.g. $\delta^{15}N$ of about -60% in N₂O from nitrification (Yoshida 1988) or δ^{18} O of about 60% in NO₃ from atmospheric deposition (Durka et al. 1994). Plotting of δ values against the corresponding N2O emission rates (Figure 2), showed that the scattering only occurred below a threshold emission rate of approximately 2-5 μ mol N₂O m⁻² h⁻¹ and fell into a more reasonable range of about ± 50% at higher emission rates. Equation (2) is based on the assumption that isotope and concentration differences between N2O in ambient air and N2O accumulated in the closed chamber are due to emission of N₂O from the soil. However, at very low emission rates, these differences decrease while the measurement error increases, until both become indistinguishable. To remove erroneous data, a threshold emission rate of 3.4 μ mol N₂O m⁻² h⁻¹ was established (see Appendix). All data measured at lower emission rates were discarded. Sufficiently high emission rates occurred only immediately after fertilizer applications (Figure 3). No data at all remained for the control plots after

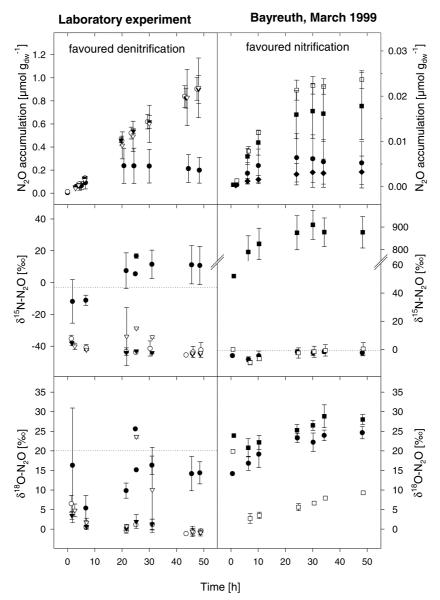


Figure 1. : Accumulation of N₂O in soil incubation experiments under conditions favouring either denitrification or nitrification and δ^{15} N and δ^{18} O values of the accumulated N₂O. Left column: favoured denitrification (80% soil water content, NO₃ application, except for the control): • control; ○ 100 mg NO₃-N; ▼ 100 mg NO₃-N, 0.01% C₂H₂; ∇ 100 mg NO₃-N, 10% C₂H₂. Right column: favoured nitrification (60% soil water content, NH₄ application, except for the control): • control; □ 100 mg NH₄-N; ■ 100 mg NH₄-N, ¹⁵NO₃-tracer; • 100 mg NH₄-N, 100% O₂. Note the different scale for denitrification and nitrification experiments in the N₂O accumulation and δ^{15} N graphs. Error bars represent standard deviations (n = 3). Where no error bars are visible, they are smaller than the symbols. Dotted lines indicate the δ^{15} N and δ^{18} O values of the added KNO₃ and NH₄Cl, respectively.

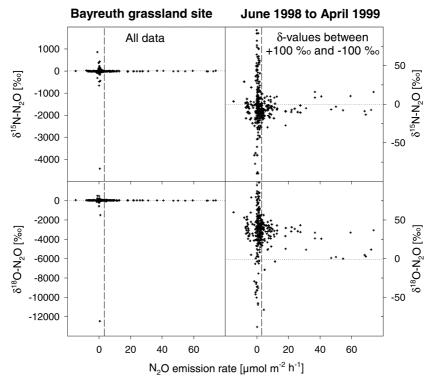


Figure 2.: $\delta^{15}N$ and $\delta^{18}O$ values of N_2O plotted against their coresponding N_2O emission rates obtained during the one-year field experiment. The left graphs show all IRMS data, the right graphs show only those in a range of -100 to +100%. The vertical dashed lines represent the threshold N_2O emission rate of 3.4 μ mol m⁻² h⁻¹ below which data are erroneous due to calculation artefacts (see section *Results* and Appendix for details).

the third fertilization (for results of the emission measurements see Tilsner et al. (2002)).

After exclusion of erroneous data, the remaining δ values fall into a range of $\delta^{15}N=-40$ to 20% and $\delta^{18}O=0$ to 50%. No temporal trends, significant differences between treatments or correlations between δ values and emission rates were detectable. Time and emission rate weighted annual mean δ values of the emitted N_2O were $\delta^{15}N=-4.6\%$ and $\delta^{18}O=24.0\%$ for plots receiving mineral N applications, $\delta^{15}N=-8.6\%$ and $\delta^{18}O=34.7\%$ for slurry fertilized plots and $\delta^{15}N=-6.4\%$ and $\delta^{18}O=35.6\%$ for control plots, respectively (Table 3). For all treatments the emitted N_2O was ^{15}N -depleted compared to N_2O in ambient air.

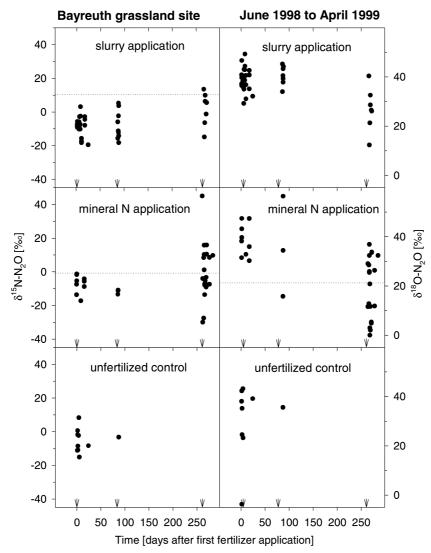


Figure 3. : δ^{15} N and δ^{18} O values of N₂O measured at emission rates $\geq 3.4~\mu mol~N_2O~m^{-2}~h^{-1}$ in dependence on the time after fertilizer application. Symbols represent individual measurements. Note the different scale for δ^{15} N and δ^{18} O. Fertilizer applications on 6 June 1998, 19 September 1998 and 15 March 1999 are indicated by arrows. Dotted lines indicate annual mean δ^{15} N-N $_{total}$ values of the respective fertilizers. For δ^{18} O, the dotted line indicates the δ^{18} O-NO $_3^-$ of the mineral fertilizer used for the third fertilizer application.

Table 3. Means 1 of $\delta^{15}N$ and $\delta^{18}O$ values of N_2O in ambient air and of N_2O emitted from an extensively managed grassland in NE Bavaria, Germany, with three different types of treatments: slurry application, mineral N application and unfertilized control. Only IRMS data measured at N_2O emission rates at or above 3.4 μ mol m⁻² h⁻¹ are included (see section *Results* and Appendix for explanation).

period	treatment	$\delta^{15} N ~[\% {\it o}]$	δ^{18} O [‰]
1 year	slurry	-8.6	34.7
	mineral N	-4.6	24.0
	control	-6.4	35.6
	ambient air2	11.4 ± 11.6	36.9 ± 10.7
after fertilization in June 1998	slurry	-8.3	39.5
	mineral N	-8.2	36.6
	control	-6.4	35.6
	ambient air2	-1.6 ± 12.0	39.1 ± 8.2
after fertilization in September 1998	slurry	-9.5	30.3
	mineral N	-16.6	17.9
	control	no data	no data
	ambient air ²	15.5 ± 4.9	48.0 ± 14.7
after fertilization in March 1999	slurry	3.0	26.3
	mineral N	-0.6	18.6
	control	no data	no data
	ambient air ²	15.8 ± 2.6	33.3 ± 2.8

¹means are weighted by time and emission rate

Discussion

Denitrification laboratory experiment

The linear increase of the N_2O concentration and the slight decrease of the soil nitrate content after NO_3^- addition indicate that denitrification took place and was not substrate-limited. With increasing NO_3^- availability, the ratio of N_2O/N_2 from denitrification usually increases (Blackmer and Bremner 1978; Mosier et al. 1983). Therefore, N_2O probably was the main end product of denitrification under the conditions of this experiment. This allows to interpret the N_2O isotope ratios of $\delta^{15}N = -40.8 \pm 5.7\%$ and $\delta^{18}O = 2.7 \pm 6.3\%$ as representative of the isotope signature of N_2O derived from denitrification without further reduction of N_2O to N_2 . The $\delta^{15}N$ value corresponds to a depletion of -37.5% against the applied NO_3^- ($\delta^{15}N = -3.3 \pm 1.1.\%$) and both, this depletion and the $\delta^{15}N$ and $\delta^{18}O$ values, agree with previous studies (Voerkelius 1990; Webster and Hopkins 1996). Due to discrimination against ^{15}N and ^{18}O , reduction of N_2O to N_2 would again lead to an increase in both, $\delta^{15}N$ - N_2O and $\delta^{18}O$ - N_2O .

In denitrification both, N and O in N_2O , originate from NO_3^- . However, at least 8% of the O atoms are exchanged with soil water during N_2O formation, depend-

²arithmetic mean of daily averages \pm SD (n = 23 for the entire year, 10 for the June 1998, 4 for the September 1998 and 9 for the March 1999 fertilizations, respectively).

ing on the turnover rate (Weeg-Aerssens et al. 1987). The actual fraction of O atoms from the applied KNO₃ (δ^{18} O = 20.1‰) that were exchanged with soil water $(\delta^{18}O = -10\%)$, Schmidt and Voerkelius (1989)) is unknown. Assuming the minimal exchange rate of 8%, the mixed substrate value would be $\delta^{18}O = 17.7\%$ and the measured δ^{18} O-N₂O value would represent an 18 O depletion of ca. 15%. However, exchange of a greater fraction of the O atoms would result in a more negative substrate δ^{18} O value and the observed δ^{18} O-N₂O could also be interpreted as a smaller ¹⁸O depletion or even an ¹⁸O enrichment against the substrate. Both, depletion and enrichment are possible, because the reaction pathway of NO₃ reduction to N₂O includes inter-molecular isotope effects, leading to ¹⁸O-depletion of the product, as well as intra-molecular isotope effects (preferential release of 16O during NO₂ reduction), leading to an ¹⁸O-enrichment. In a sequential reaction pathway, an inter-molecular isotope effect can only result in an isotope discrimination in the pathway's final product, if not all of the available substrate is consumed, i.e. if intermediates accumulate. At a high turnover rate, only the rate limiting step contributes to the overall isotope effect. An intra-molecular effect, on the other hand, is independent of the turnover rate, because all reacting molecules are subjected to the discrimination. Slow and steady denitrification under substrate-limited conditions will, therefore, make an ¹⁸O enrichment more likely. Rapid turnover after sudden addition of substrate, as in this experiment, will probably result in accumulation of intermediates and ¹⁸O depleted N₂O (Shearer and Kohl 1988; Voerkelius 1990). Here, with the exchanged fraction of O atoms unknown, a conclusive interpretation of the δ^{18} O data is not possible.

The ¹⁵N discrimination also depends on the process turnover rate. Considering the reduction of NO₃ to N₂O, only inter-molecular effects are involved, leading to a ¹⁵N depletion against the substrate. However, this depletion is more pronounced when intermediates accumulate and isotope effects of other reaction steps than the normally rate-limiting nitrate reduction become relevant. Therefore, a denitrification process rapidly starting after sudden substrate addition will lead to more negative δ^{15} N-N₂O values than one steadily progressing with continual substrate availability (Mariotti et al. 1982; Voerkelius 1990). Considering also the reduction of N₂O to N₂, an inter-molecular isotope effect can once again cause an increase in δ¹⁵N-N₂O. Voerkelius (1990) found a ¹⁵N fractionation of -4.2% for N₂O reduction. Vogel et al. (1981) reported that N₂ formed in incubation experiments with denitrifiying groundwater samples was depleted by -30% against the NO₃ substrate, which is only 7.5% more positive than the ¹⁵N-depletion of N₂O. The isotope effect of N₂O reduction thus appears to be small compared to that of N₂O production from NO₃. Thus, N₂O from denitrification can usually be expected to have more negative $\delta^{15}N$ values than its substrate. However, increasing N₂O concentrations lead to a greater isotope fractionation in N2O reduction (Voerkelius 1990) and thus, more positive $\delta^{15}\text{N-N}_2\text{O}$ values, as observed in the controls of this experiment. Summing up, a variety of different factors affect N₂O isotope composition, making it necessary that field experiments should always be accompanied by laboratory incubations of soil samples under a range of different conditions to determine soil specific characteristics of N₂O isotope composition.

Nitrification did not contribute significantly to N_2O production, as demonstrated by the absence of any effect of 10 Pa or 10 kPa C_2H_2 on N_2O formation rate or isotopic composition. Diffusion of C_2H_2 into the soil may have been ineffective, because of the high soil water content. But even so, at least in the 10 kPa acetylene incubation, diffusion of only 0.1% of the applied acetylene into the soil were sufficient to block nitrification. However, the C_2H_2 concentration in the soil air may not have been high enough to block N_2O reduction. Inhibition of this step by 10 kPa C_2H_2 has previously been found to be ineffective in wet soils (Malone et al. 1997).

Nitrification laboratory experiment

NH₄⁺ consumption and an increase in soil NO₃⁻ prove that nitrification took place in all treatments of this experiment. However, under conditions favouring nitrification, the small N₂O emissions alone indicate that N₂O production in nitrification was much lower than in denitrification. Higher NH₄⁺ consumption (350–470 μ mol) than net NO₃⁻ formation ($\sim 15~\mu$ mol) indicates that denitrification might have occurred as well. The 15 N labelling of the soil NO₃⁻ pool resulted in considerably 15 N enriched N₂O, proving that denitrification, indeed, contributed significantly to the N₂O production. Furthermore, N₂O production levelled off in all NH₄⁺ fertilized treatments, despite of more than 90% of the applied NH₄⁺ still being present. If N₂O mainly derived from denitrification even under nitrification-favouring conditions, the rate of NO₃⁻ supply through nitrification could have been limiting for the N₂O production. Finally, lower N₂O production under 100% O₂ than in ambient air suggests inhibition of denitrification, although nitrifier denitrification could also have been affected. Thus, even the little N₂O emitted under conditions favouring nitrification cannot be completely ascribed to nitrification.

The experiment demonstrated clearly that even when nitrification took place, denitrification was a significant source of N_2O . Since the N_2O emitted in this incubation experiment could not be attributed to nitrification and since N_2O consumption probably occurred simultaneously, it was not possible to determine the isotope signature of N_2O from nitrification. In nitrification, N_2O -N comes from NH_4^+ , with a δ value depending on the NH_4^+ source. NH_4^+ is oxidized to hydroxylamine (NH_2OH) with O_2 from soil air ($\delta^{18}O=23.5\%$, Schmidt and Voerkelius (1989)), so that O in N_2O formed via NOH disintegration should derive solely from that source. The second O atom for the oxidation of NH_2OH to NO_2^- originates from soil water ($\delta^{18}O\approx-10\%$, Schmidt and Voerkelius (1989)). N_2O from nitrifier denitrification should, therefore, have an intermediate $\delta^{18}O$ value of approximately 6.5%.

Little data has been published on the isotope signature of N_2O derived from nitrification. Yoshida (1988) and Webster and Hopkins (1996) used pure cultures of *Nitrosomonas europaea* and *N. multiformis* and found a very strong ¹⁵N depletion of more than 60% against the substrate. However, these data cannot be compared directly to a field situation, because NO_2^- accumulated during the experiment (Voerkelius 1990). This is not the case under field conditions, because NH_4^+ oxidation is

the rate limiting step. When NO_2^- accumulates, the inter-molecular isotope effect of the NO_2^- reduction step during nitrifier denitrification can contribute to the overall isotope discrimination, leading to a much greater ^{15}N depletion than under field conditions. Both, Voerkelius (1990) and Webster and Hopkins (1996), investigated the isotope signature of N_2O from nitrification in soil incubation experiments, but neither of these studies included additional tests for denitrification ($100\%\ O_2$ or $^{15}NO_3^-$ labelling). In conclusion, the isotope composition of N_2O from nitrification has yet to be measured accurately. A possible approach could be to focus on the δ values of N_2O formed within minutes after NH_4^+ addition, before NO_3^- formation stimulates denitrification.

Field experiment

The δ values of N₂O from ambient air agree with the range reported by other authors (Yoshida and Matsuo 1983; Yoshinari 1990; Kim and Craig 1993). Even though individual soil emissions of isotopically enriched N₂O occurred, the mean δ^{15} N-N₂O values weighted by time and emission rate were depleted against the respective samples of N₂O from ambient air for the entire year as well as for each fertilizer application (Table 3). Annual and June 1998 average δ^{18} O values of the emitted N₂O agreed with those of the respective samples from ambient air, but September 1998 and March 1999 values were also depleted (Table 3). The reasons why N₂O in air is usually enriched in heavy isotopes, while all known sources produce isotopically depleted N₂O, are still unknown (Kim and Craig 1993). Seasonal variation of ambient air N₂O isotope composition as an effect of climatic conditions has also been reported (Yoshida and Matsuo 1983), but there is not yet enough information available to allow the interpretation of our data with respect to such aspects.

The laboratory experiments show that N_2O was most likely produced by denitrification throughout the field experiment, because the field soil emitted very little N_2O under conditions favouring nitrification and even that derived at least partially from denitrification. Moreover, the generally wet soil conditions during fall, winter and spring (after the September and March fertilizer applications) that favour denitrification support this assumption. Also, after fertilizer applications the mineral N fertilized plots, where NO_3^- was immediately available, reached their maximal N_2O emission rate faster than the slurry fertilized plots, where nitrification had to proceed first in order to supply substrate for denitrification (for emission data see Tilsner et al. (2002)). Nevertheless, nitrification could have been the soil process with the highest N turnover despite not being the most important source of N_2O . Since N_2O is an obligatory intermediate of denitrification, the "leakage" in this process is expected to be higher than in nitrification (Firestone and Davidson 1989).

The isotope data obtained in the field experiment give no conclusive indication towards one particular process as a dominant N_2O source, especially since no definite information is available on δ values of N_2O from nitrification. Rather, the data show considerable variation in all treatments after each fertilizer application, demonstrating a very high spatial inhomogeneity of N_2O forming processes in the soil.

This has to be taken into account for further field experiments using stable isotopes for the distinction of N_2O from nitrification or denitrification. The lowest δ values found here ($\delta^{15}N = -30.0\%$ and $\delta^{18}O = -3.7\%$) agree with those from the denitrification laboratory experiment and correspond to depletions by approximately -30% against soil nitrate for both isotopes (data not shown, see Tilsner et al. (2002)). It has been pointed out above that less isotopically depleted, or in the case of ^{18}O even enriched, N_2O can be formed during denitrification as well. Furthermore, fractionation against ^{15}N during the reduction of N_2O to N_2 in a wet soil with hindered diffusion would result in a ^{15}N -enrichment of the remaining N_2O in the soil.

In conclusion, the analysis of stable isotopes at natural abundance levels can become a valuable tool for the identification of N_2O sources in the field. Difficulties encountered here were mostly due to the low N_2O emission rates. Therefore, further experiments on soils with higher N_2O fluxes should be carried out to improve the yield of data which are unbiased by calculation thresholds. The method may eventually remain restricted to sites with sufficiently high emission rates or requires further methodological improvement. Additionally, more research is needed on the isotope signature of N_2O derived from nitrification. The recently established position specific isotope analysis of the two N atoms of N_2O (Brenninkmeijer and Röckmann 1999) will likely improve identification of source processes based on δ values of the emitted gas. Isotope analyses of N_2O should always be combined with data on the isotope signature of the respective sources of N_2O production to calculate isotope fractionations.

Acknowledgements

This investigation was funded by the European Community as part of the project COGANOG (FAIR3 CT96-1920). Constructive support of our field work by Gutsverwalter Höpfel (Landwirtschaftliche Lehranstalten, Bezirk Oberfranken) and skilful help with the sample preparation and analysis by Ruth Gerl and Margarete Wartinger (Universität Bayreuth) are gratefully acknowledged. Constructive comments by two anonymous reviewers helped substantially for improving the manuscript.

Appendix

Calculation of a threshold emission rate for reliable isotope data

The emission rate below which the intrinsic errors of the measurement system and the actual % difference of $\delta x_{emitted}$ and $\delta x_{ambient air}$ become indistinguishable de-

pends on both, the source process and the isotope in consideration. To obtain one minimum emission rate that could be used for all isotope data, the isotopic differences between $\delta x_{\rm emitted}$ and $\delta x_{\rm ambient\ air}$ were "standardized": Means of both, $\delta^{15}N_{\rm emitted}$ and $\delta^{18}O_{\rm emitted}$, corrected for ambient air and weighted by time and emission rate were calculated for each of the three fertilization periods. Then, differences between weighted means of $\delta x_{\rm emitted}$ and the corresponding mean $\delta x_{\rm ambient\ air}$ values were calculated. The mean of these differences was –8.4%o. Thus, for the calculation of the threshold emission rate, δv values were standardized as $\delta x_{\rm ambient\ air} \equiv 0\%o$ and $\delta x_{\rm emitted} \equiv -8.4\%o$. Equation (2) then yields:

$$\delta x_{measured} = \delta x_{emitted} + \frac{c_{ambient\ air}}{c_{measured}} \times (\delta x_{ambient\ air} - \delta x_{emitted}) \tag{4}$$

Considering the intrinsic errors of the measurement system, $\delta x_{\rm measured}$ can be expressed as a minimum deviation from $\delta x_{\text{ambient air}}$ and Equation (4) solved to give the minimum value for c_{measured}: Although the error of the IRMS alone is smaller, the actual measurement error can be around ± 1-2%, because the measurement error of the TGA and errors resulting from the sampling and the often low IRMS signal intensity (< 1 V) add to it. This also implies that the measurement error increases for low fluxes. It can be assumed that measurement errors plus natural variability in the δ values can result in a maximum difference of $\delta x_{\rm ambient~air} - \delta x_{\rm measured}$ \approx 4%0 without any actual N₂O emission. The minimum emission rate should therefore be such that $\delta x_{measured} \leq \delta x_{ambient air} - 4\%$. With $c_{ambient air} = 0.327 \pm 0.00$ 0.059 ppm (annual mean in this study), Equation (4) yields $c_{measured} \ge 0.624$ ppm. Assuming a linear increase starting at $c_{ambient} = 0.327$ ppm at t_0 over an accumulation time of 40 minutes during which the soil chambers were closed, c_{measured} corresponds to a minimum emission rate of 3.4 μ mol N₂O m⁻² h⁻¹. As can be seen from Figure 2, this value agrees well with the borderline between randomly scattering and interpretable isotope data. Therefore, for all further discussion only δ values measured at emission rates $\geq 3.4 \mu \text{mol N}_2\text{O m}^{-2} \text{ h}^{-1}$ (24% of all data) were considered.

References

Arah J.R.M, Smith K.A., Crichton I.J. and Li H.S. 1991. Nitrous oxide production and denitrification in Scottish arable soils. J. Soil Sci. 42: 351–367.

Arah J.R.M., Crichton I.J. and Smith K.A. 1993. Denitrification measured directly using a single-inlet mass spectrometer and by acetylene inhibition. Soil Biol. Biochem. 25: 233–238.

Bauer G.A., Gebauer G., Harrison A.F., Högberg P., Högbom L., Schinkel H. et al. 2000. Biotic and abiotic controls over ecosystem cycling of stable natural nitrogen, carbon and sulphur isotopes. In: Schulze E.-D. (ed.), Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies. Vol. 142. Springer-Verlag, Berlin-Heidelberg, Germany, pp. 189–214.

Blackmer A.M. and Bremner J.M. 1978. Inhibitory effect of nitrate on reduction of nitrous oxide to molecular nitrogen by soil microorganisms. Soil Biol. Biochem. 10: 187–191.

- Brand W.A. 1995. PreCon: A fully automated interface for the pre-GC concentration of trace gases in air for isotopic analysis. Isotopes Environ. Health Stud. 31: 277–284.
- Brenninkmeijer C.A.M. and Röckmann T. 1999. Mass spectrometry of the intra-molecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis. Rapid Commun. Mass Spectrom. 13: 2028–2033.
- Crutzen P.J. 1981. Atmospheric chemical processes of the oxides of nitrogen, including nitrous oxide. In: Delwiche C.C. (ed.), Denitrification, Nitrification and Atmospheric Nitrous Oxide. John Wiley and Sons, Chichester, UK, pp. 17–44.
- Davidson E.A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers J.E. and Whitman W.B. (eds), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. American Society for Microbiology, Washington, DC, USA, pp. 219–235.
- Davidson E.A. 1992. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci. Soc. Am. J. 56: 95–102.
- Durka W., Schulze E.D., Gebauer G. and Voerkelius S. 1994. Effects of forest decline on uptake and leaching of deposited nitrate determined from ¹⁵N and ¹⁸O measurements. Nature 372: 765–767.
- Ehleringer J.R. and Rundel P.W. 1988. Stable isotopes: History, units and instrumentation. In: Rundel P.W., Ehleringer J.R. and Nagy K.A. (eds), Stable Isotopes in Ecological Research. Ecological Studies. Vol. 68. Springer-Verlag, Berlin-Heidelberg, Germany, pp. 1–19.
- Firestone M.K. and Davidson E.A. 1989. Microbiological basis of NO and N₂O production and consumption in soil. In: Andreae M.O. and Schimel D.S. (eds), Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere. John Wiley and Sons, Chichester, UK, pp. 7–21.
- Goreau T.J., Kaplan W.A., Wofsy S.C., McElroy M.B., Valois F.W. and Watson S.W. 1980. Production of nitrite and nitrous oxide by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40: 526–532.
- Granli T. and Bøckman O.C. 1994. Nitrous oxide from agriculture. Norw. J. Agric. Sci. Suppl. No. 12. Gross P.J. and Bremner J.M. 1992. Acetone problem in use of the acetylene blockage method for assessment of denitrifying activity in soil. Soil Biol. Biochem. 23: 299–302.
- Högberg P. 1997. ¹⁵N natural abundance in soil-plant systems. Tansley Review No. 95. New Phytol. 137: 179–203.
- Hynes R.K. and Knowles R. 1984. Production of nitrous oxide by *Nitrosomonas europaea*: effects of acetylene, pH, and oxygen. Can J. Microbiol. 30: 1397–1404.
- IPCC Intergovernmental Panel on Climate Change 1995. Climate change 1994 radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. In: Houghton J.T., Meira Filho M.G., Bruce J., Hoesung Lee J., Callander B.A., Haites E. et al. (eds). Cambridge University Press, Cambridge, UK.
- IPCC Intergovernmental Panel on Climate Change 1996. Climate Change 1995 The science of climate change. In: Houghton J.T., Meira Filho M.G., Callander B.A., Harris N., Kattenberg A. and Maskell K. (eds). Cambridge University Press, Cambridge, UK.
- Khdyer I.I. and Cho C.M. 1983. Nitrification and denitrification of nitrogen fertilizers in a soil column. Soil Sci. Soc. Am. J. 47: 1134–1139.
- Kim K.Y. and Craig H. 1990. Two-isotope characterization of N_2O in the Pacific Ocean and constraints on its origin in deep water. Nature 347: 58–61.
- Kim K.Y. and Craig H. 1993. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: A global perspective. Science 262: 1855–1857.
- Klemedtsson L., Hansson G. and Mosier A. 1990. The use of acetylene for the quantification of N₂ and N₂O production from biological processes in soil. In: Revsbech N.P. and Sørensen J. (eds), Denitrification in Soil and Sediment. Plenum Press, New York, NY, USA, pp. 167–180.
- Knowles R. 1982. Denitrification. Microb. Rev. 46: 43-70.
- Knowles R. 1990. Acetylene inhibition technique: Development, advantages, and potential problems. In: Revsbech N.P. and Sørensen J. (eds), Denitrification in Soil and Sediment. Plenum Press, New York, NY, USA, pp. 151–166.

- Malone J.P., Stevens R.J. and Laughlin R.J. 1997. Combining the ¹⁵N and acetylene inhibition techniques to examine the effect of acetylene on denitrification. Soil Biol. Biochem. 30: 31–37.
- Mariotti A., Germon J.C. and Leclerc A. 1982. Nitrogen isotope fractionation associated with the NO₂
 → N₂O step of denitrification in soils. Can. J. Soil Sci. 62: 227–241.
- Mariotti A. 1983. Atmospheric nitrogen is a reliable standard for natural $\delta^{15}N$ abundance measurements. Nature 303: 685–687.
- Mosier A.R., Parton W.J. and Hutchinson G.L. 1983. Modelling nitrous oxide evolution from cropped and native soils. Environ. Biogeochem. Ecol. Bull. 35: 229–241.
- Mosier A.R., Kroeze C., Nevison C., Oenema O., Seitzinger S. and van Cleemput O. 1998. Closing the global atmospheric N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cyc. Agroecosys. 52: 225–248.
- Parkin T.B. and Tiedje J.M. 1984. Application of a soil core method to investigate the effect of oxygen concentration on denitrification. Soil Biol. Biochem. 16: 331–334.
- Payne W.J. 1981. The status of nitric oxide and nitrous oxide as intermediates in denitrification. In: Delwiche C.C. (ed.), Denitrification, Nitrification and Atmospheric Nitrous Oxide. John Wiley and Sons, Chichester, UK, pp. 85–103.
- Poth M. and Focht D.D. 1985. ¹⁵N kinetic analysis of N₂O production by *Nitrosomonas europaea*: an examination of nitrifier denitrification. Appl. Environ. Microbiol. 49: 1134–1141.
- Ritchie G.A.F. and Nicholas D.J.D. 1972. Identification of nitrous oxide produced by oxidative and reductive processes in *Nitrosomonas europaea*. Biochem. J. 126: 1181–1191.
- Robertson G.P. and Tiedje J.M. 1987. Nitrous oxide sources in aerobic soils: Nitrification, denitrification and other biological processes. Soil Biol. Biochem. 19: 187–193.
- Schmidt H.-L. and Voerkelius S. 1989. Origin and isotope effects of oxygen in compounds of the nitrogen cycle. In: Isotopes in Nature, 5th Working Meeting, Proceedings. Leipzig, Germany.
- Shearer G. and Kohl D.H. 1988. Nitrogen isotope fractionation and ¹⁸O-exchange in relation to the mechanism of denitrification of nitrite by *Pseudomonas stutzeri*. J. Biol. Chem. 263: 13231–13245.
- Shearer G. and Kohl D.H. 1993. Natural abundance of ¹⁵N: fractional contribution of two sources to a common sink and use of isotopic discrimination. In: Knowles R. and Blackburn T.H. (eds), Nitrogen Isotope Techniques. Academic Press, New York, USA, pp. 89–125.
- Tilsner J., Wrage N., Lauf J. and Gebauer G. 2002. Emission of gaseous nitrogen oxides from an extensively managed grassland ecosystem in NE Bavaria, Germany. I: Annual budgets of N₂O and NO_x emissions. Biogeochemistry (this issue).
- Voerkelius S. 1990. Isotopendiskriminierungen bei der Nitrifikation und Denitrifikation; Grundlagen und Anwendungen der Herkunfts-Zuordnung von Nitrat und Distickstoffmonoxid. PhD Dissertation, Technical University of Munich, Germany.
- Vogel J.C., Talma A.S. and Heaton T.H.E. 1981. Gaseous nitrogen as evidence for denitrification in groundwater. J. Hydrol. 50: 191–200.
- Wahlen M. and Yoshinari T. 1985. Oxygen isotope ratios in N₂O from different environments. Nature 313: 780–782.
- Webster E.A. and Hopkins D.W. 1996. Nitrogen and oxygen isotope ratios of nitrous oxide emitted from soil and produced by nitrifying and denitrifying bacteria. Biol. Fertil. Soils 22: 326–330.
- Weeg-Aerssens E., Tiedje J.M. and Averill B.A. 1987. The mechanism of microbial denitrification. J. Am. Chem. Soc. 109: 7214–7215.
- Wrage N., Velthof G.L., van Beusichem M.L. and Oenema O. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33: 1723–1732.
- Yoshida N. and Matsuo S. 1983. Nitrogen isotope ratio of atmospheric N₂O as a key to the global cycle of N₂O. Geochem. J. 17: 231–239.
- Yoshida N. 1988. ¹⁵N-depleted N₂O as a product of nitrification. Nature 335: 528-529.
- Yoshinari T. 1990. Emissions of N₂O from various environments. The use of stable isotope composition of N₂O as tracer for the studies of N₂O biogeochemical cycling. In: Revsbech N.P. and Sørensen J. (eds), Denitrification in Soil and Sediment. Plenum Press, New York, USA, pp. 129–150.
- Zumft W.G. and Kroneck M.H. 1990. Metabolism of nitrous oxide. In: Revsbech N.P. and Sørensen J. (eds), Denitrification in Soil and Sediment. Plenum Press, New York, USA, pp. 37–55.